Monday, 27 August 2012

Philosophy And More...



A number of computer scientists have argued for the distinction of three separate paradigms in computer science. Peter Wegner argued that those paradigms are science, technology, and mathematics.[16] Peter Denning's working group argued that they are theory, abstraction (modeling), and design.[17] Amnon H. Eden described them as the "rationalist paradigm" (which treats computer science as branch of mathematics, which is prevalent in theoretical computer science, and mainly employs deductive reasoning), the "technocratic paradigm" (which might be found in engineeringapproaches, most prominently in software engineering), and the "scientific paradigm" (which approaches computer-related artifacts from the empirical perspective of natural sciences, identifiable in some branches of artificial intelligence).[18]

[edit]Name of the field

The term "computer science" was first coined by the numerical analyst George Forsythe in 1961.[19] Despite its name, a significant amount of computer science does not involve the study of computers themselves. Because of this, several alternative names have been proposed. Certain departments of major universities prefer the term computing science, to emphasize precisely that difference. Danish scientist Peter Naur suggested the term datalogy, to reflect the fact that the scientific discipline revolves around data and data treatment, while not necessarily involving computers. The first scientific institution to use the term was the Department of Datalogy at the University of Copenhagen, founded in 1969, with Peter Naur being the first professor in datalogy. The term is used mainly in the Scandinavian countries. Also, in the early days of computing, a number of terms for the practitioners of the field of computing were suggested in theCommunications of the ACM – turingineerturologistflow-charts-manapplied meta-mathematician, and applied epistemologist.[20] Three months later in the same journal, comptologist was suggested, followed next year by hypologist.[21] The term computics has also been suggested.[22] In Europe, terms derived from contracted translations of the expression "automatic information" (e.g. "informazione automatica" in Italian) or "information and mathematics" are often used, e.g. informatique (French), Informatik (German), informatica (Italy), informática (Spain, Portugal) orinformatika (Slavic languages) are also used and have also been adopted in the UK (as in the School of Informatics of the University of Edinburgh).[23]
A folkloric quotation, often attributed to—but almost certainly not first formulated by—Edsger Dijkstra, states that "computer science is no more about computers than astronomy is about telescopes."[note 1] The design and deployment of computers and computer systems is generally considered the province of disciplines other than computer science. For example, the study ofcomputer hardware is usually considered part of computer engineering, while the study of commercial computer systems and their deployment is often called information technology or information systems. However, there has been much cross-fertilization of ideas between the various computer-related disciplines. Computer science research also often intersects other disciplines, such asphilosophycognitive sciencelinguisticsmathematicsphysicsstatistics, and logic.
Computer science is considered by some to have a much closer relationship with mathematics than many scientific disciplines, with some observers saying that computing is a mathematical science.[6] Early computer science was strongly influenced by the work of mathematicians such as Kurt Gödel and Alan Turing, and there continues to be a useful interchange of ideas between the two fields in areas such as mathematical logiccategory theorydomain theory, and algebra.
The relationship between computer science and software engineering is a contentious issue, which is further muddied by disputes over what the term "software engineering" means, and how computer science is defined.[24] David Parnas, taking a cue from the relationship between other engineering and science disciplines, has claimed that the principal focus of computer science is studying the properties of computation in general, while the principal focus of software engineering is the design of specific computations to achieve practical goals, making the two separate but complementary disciplines.[25]
The academic, political, and funding aspects of computer science tend to depend on whether a department formed with a mathematical emphasis or with an engineering emphasis. Computer science departments with a mathematics emphasis and with a numerical orientation consider alignment with computational science. Both types of departments tend to make efforts to bridge the field educationally if not across all research.

[edit]Areas of computer science

As a discipline, computer science spans a range of topics from theoretical studies of algorithms and the limits of computation to the practical issues of implementing computing systems in hardware and software.[26][27] CSAB, formerly called Computing Sciences Accreditation Board – which is made up of representatives of the Association for Computing Machinery (ACM), and theIEEE Computer Society (IEEE-CS)[28] – identifies four areas that it considers crucial to the discipline of computer science: theory of computationalgorithms and data structuresprogramming methodology and languages, and computer elements and architecture. In addition to these four areas, CSAB also identifies fields such as software engineering, artificial intelligence, computer networking and communication, database systems, parallel computation, distributed computation, computer-human interaction, computer graphics, operating systems, and numerical and symbolic computation as being important areas of computer science.[26]

[edit]Theoretical computer science

The broader field of theoretical computer science encompasses both the classical theory of computation and a wide range of other topics that focus on the more abstract, logical, and mathematical aspects of computing.

[edit]Theory of computation

According to Peter J. Denning, the fundamental question underlying computer science is, "What can be (efficiently) automated?"[6] The study of the theory of computation is focused on answering fundamental questions about what can be computed and what amount of resources are required to perform those computations. In an effort to answer the first question, computability theoryexamines which computational problems are solvable on various theoretical models of computation. The second question is addressed by computational complexity theory, which studies the time and space costs associated with different approaches to solving a multitude of computational problems.
The famous "P=NP?" problem, one of the Millennium Prize Problems,[29] is an open problem in the theory of computation.
DFAexample.svgWang tiles.pngP = NP ?GNITIRW-TERCESBlochsphere.svg
Automata theoryComputability theoryComputational complexity theoryCryptographyQuantum computing theory

[edit]Information and coding theory

Information theory is related to the quantification of information. This was developed by Claude E. Shannon to find fundamental limits on signal processing operations such as compressing data and on reliably storing and communicating data. Coding theory is the study of the properties of codes (systems for converting information from one form to another) and their fitness for a specific application. Codes are used for data compressioncryptographyerror detection and correction, and more recently also for network coding. Codes are studied for the purpose of designing efficient and reliable data transmission methods.

[edit]Algorithms and data structures

O(n^2)Sorting quicksort anim.gifSingly linked list.pngSimplexRangeSearching.png
Analysis of algorithmsAlgorithmsData structuresComputational geometry

[edit]Programming language theory

Programming language theory (PLT) is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of programming languages and their individual features. It falls within the discipline of computer science, both depending on and affecting mathematicssoftware engineering and linguistics. It is an active research area, with numerous dedicated academic journals.
\Gamma\vdash x: \text{Int}Ideal compiler.pngPython add5 syntax.svg
Type theoryCompiler designProgramming languages

[edit]Formal methods

Formal methods are a particular kind of mathematically based technique for the specification, development and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness of a design. However, the high cost of using formal methods means that they are usually only used in the development of high-integrity and life-critical systems, where safety orsecurity is of utmost importance. Formal methods are best described as the application of a fairly broad variety of theoretical computer science fundamentals, in particular logic calculi, formal languagesautomata theory, and program semantics, but also type systems and algebraic data types to problems in software and hardware specification and verification.

[edit]Concurrent, parallel and distributed systems

Concurrency is a property of systems in which several computations are executing simultaneously, and potentially interacting with each other. A number of mathematical models have been developed for general concurrent computation including Petri netsprocess calculi and the Parallel Random Access Machine model. A distributed system extends the idea of concurrency onto multiple computers connected through a network. Computers within the same distributed system have their own private memory, and information is often exchanged amongst themselves to achieve a common goal.

[edit]Databases and information retrieval

A database is intended to organize, store, and retrieve large amounts of data easily. Digital databases are managed using database management systems to store, create, maintain, and search data, through database models and query languages.

[edit]Applied computer science

[edit]Artificial intelligence

This branch of computer science aims to or is required to synthesise goal-orientated processes such as problem-solving, decision-making, environmental adaptation, learning and communication which are found in humans and animals. From its origins in cybernetics and in the Dartmouth Conference (1956), artificial intelligence (AI) research has been necessarily cross-disciplinary, drawing on areas of expertise such as applied mathematicssymbolic logicsemioticselectrical engineeringphilosophy of mindneurophysiology, and social intelligence. AI is associated in the popular mind with robotic development, but the main field of practical application has been as an embedded component in areas of software development which require computational understanding and modeling such as finance and economics, data mining and the physical sciences. The starting-point in the late 1940s was Alan Turing's question "Can computers think?", and the question remains effectively unanswered although the "Turing Test" is still used to assess computer output on the scale of human intelligence. But the automation of evaluative and predictive tasks has been increasingly successful as a substitute for human monitoring and intervention in domains of computer application involving complex real-world data.
Nicolas P. Rougier's rendering of the human brain.pngHuman eye, rendered from Eye.svg.pngCorner.pngKnnClassification.svg
Machine learningComputer visionImage processingPattern recognition
User-FastFission-brain.gifData.pngSky.pngEarth.png
Cognitive scienceData miningEvolutionary computationInformation retrieval
Neuron.svgEnglish.pngHONDA ASIMO.jpg
Knowledge representationNatural language processingRobotics

No comments:

Post a Comment